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We consider stationary perturbations to Couette-Poiseuille flows. These may be 
considered to be related to far downstream/upstream entry/end effects in flow inside 
long cavities and channels. Three distinct classes of basic flow are considered, all of 
which are exact solutions of the Navier-Stokes equations. We first study the problem 
in the case of Poiseuille flow, and are able to explain a previous discrepancy between 
fully numerical results, and asymptotic theory valid for large Reynolds numbers, R. 
The second case, which may be derived from a combination of an imposed streamwise 
pressure gradient and sliding of the upper channel wall, is for the particular situation 
where the flow on the lower surface is on the verge of reversing direction. The third case 
is relevant to the flow inside a long driven cavity (with closed ends, no imposed 
streamwise pressure gradient and no net mass flux). The flow is driven exclusively by 
a sliding top wall and mass conservation demands that the flow is no longer 
unidirectional. 

For low Reynolds numbers, the stationary eigenvalues in all cases considered are 
complex (and hence are not monotonic in the streamwise direction). Indeed as R + 0 
the eigenvalues become completely independent of the base profile. As the Reynolds 
number is increased, the eigenvalues generally undergo a number of branching 
processes switching between being complex and real (and vice versa) in nature, and at 
large Reynolds numbers fall broadly into three distinct categories, namely O( l), 
O(R-l/’) and O ( l / R ) .  In this limit the eigenvalues may be either complex or real 
(tending to monotonic eigensolutions in the streamwise direction). 

Of particular interest are certain of the O( 1) eigensolutions for the ‘ driven-cavity ’ 
problem, in the high-Reynolds-number limit; these turn out to be highly oscillatory 
(WKB-type) over much of the cavity section. 

In all three cases, we use a combination of numerical and asymptotic techniques, and 
a thorough comparison between results thus obtained is made. 

1. Introduction 
The general class of problem considered is that of two-dimensional incompressible 

viscous flow through a long straight channel, with particular (but not exclusive) 
attention on the limiting case of high-Reynolds-number flow. Stationary small- 
amplitude perturbations to the fully developed flow in three different cases are 
investigated. The first case considered is that of plane Poiseuille flow, where both walls 
of the channel are stationary, with the flow driven exclusively by a uniform imposed 
pressure gradient. In the past, this case has been quite widely studied, both analytically 
and numerically. The disturbances to the basic flow are governed by a form of the 



154 J.  R.  Stocker and P .  W. Duck 

FIGURE 1 .  Plane Poiseuille flow in a channel. 

Orr-Sommerfeld equation, and thus in general a numerical approach must be adopted. 
The previous numerical work on this particular problem includes that of Bramley & 
Dennis (1982, 1984) and Bramley (1984), who used a Chebyshev polynomial 
representation of the eigensolutions as the basis for their studies. One of our (two) 
numerical schemes is based on this method, and this previous work provides an 
extremely useful benchmark, and confirmed the integrity of our schemes. Additionally, 
for the case of plane Poiseuille flow, we present somewhat more comprehensive results 
than before, detailing results for many modes, over a range of Reynolds numbers. The 
problem is also tackled using asymptotic analysis valid for large and small Reynolds 
numbers, following Wilson (1969). We are also able to point out a slight inconsistency 
in this work. 

The second case we consider is that of stationary perturbations to a linear 
combination of Couette and plane Poiseuille flows, generated by both an imposed 
streamwise pressure gradient and a moving top wall, for the special case when the shear 
on the (stationary) lower wall vanishes. Finally, the case of flow where the upper wall 
is moving, but there is no net mass flux (and no streamwise pressure gradient) in the 
fluid is considered, corresponding to flow inside a long ‘driven’ cavity. 

Incompressible viscous flow through a channel is a widely studied problem. Various 
regions in the channel must be considered separately when attempting to solve the 
problem at large Reynolds numbers. The problem of flow entering the channel, with 
both the upper and lower plate fixed, i.e. plane Poiseuille flow development, has been 
studied by Van Dyke (1970) and Wilson (1971), and these studies correspond to our 
first case where the far downstream cross-sectional profile in the channel is a small 
perturbation to plane Poiseuille flow (see region IIIa in figure 1). Region I a  is an 
inviscid core, where the flow has not yet been affected by entry into the channel. Region 
IIa is where a Blasius-type boundary layer is forming. The region immediately adjacent 
to the leading edge of the plates - region Oa - is one in which the boundary-layer 
expansions are not valid, and the full Navier-Stokes equations describe the flow. These 
solutions can, in principle, be matched together to give an analytic approximation to 
flow in the entire channel. 

Our second case is of less interest physically, but represents a mathematical 
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watershed. The conditions to which this case corresponds are flow through a channel 
with a moving lid, an overall mass flux, subject to an (adverse) pressure gradient, with 
flow that is on the verge of reversing on the lower wall. 

The third case corresponds to flow through a long thin 'driven' cavity, with no 
imposed pressure gradient. This flow is subject to a mass restriction condition which 
leads to a parabolic cross-sectional profile and, interestingly, flow reversal far from the 
ends of the cavity. The work presented here is a consideration of flow in region IIIc 
in figure 2. Region Ic  involves a corner where there probably exists an infinite sequence 
of alternately rotating eddies. The presence of these was shown by Moffatt (1964) for 
flow past a 'corner' of internal angle < 146.3'. Moffatt showed the presence of these 
eddies for low Reynolds numbers, but they have also been found numerically at higher 
Reynolds numbers. There is also a singularity in the flow in region Oc, where the 
moving lid meets the fixed wall. Flow reversal must take place in region IIc. Once 
again, separate (but matching) asymptotic descriptions are necessary for all of these 
regions. This case is particularly important from a physical perspective, because of the 
reversing nature of the flow. One goal of the paper is to glean some insight into the flow 
reversal process; indeed, some of our results for this particular case at high Reynolds 
numbers indicate some novel and intriguing complex features of the flow. 

These stationary perturbations to the flow field may be produced in a variety of 
ways. One mechanism would be through endwall and entry flow effects, such as 
suggested in figures 1 and 2. Close to these locations disturbances must be large, but 
further away disturbances are expected to decay away, leaving just a basic flow (which 
may be taken to be independent of the streamwise location). The manner in which this 
state is approached will be determined to a large extent by the stationary eigensolutions. 
Alternatively, any flow distortion, such as a fixed obstacle located anywhere in the flow 
field or any steady perturbation of the boundary would also trigger such eigensolutions, 
both upstream and downstream of the perturbation. The work of Dennis & Smith 
(1980) is relevant here, in the context of perturbations to plane Poiseuille flow. Since 
the present work is concerned with locations distant from the actual flow perturbation, 
we assume that the disturbances have decayed sufficiently and so there is no need to 
impose any magnitude constraints on the source of the disturbances, per se, merely that 
the distance from the source of the distortion should be sufficiently large, so that the 
perturbations themselves are sufficiently small. 

Previous work by one of the authors, Stocker (1992), describes a numerical scheme 
to solve the full, small-amplitude equations for any developed flow/cross-sectional 
profile. The results thus obtained both inspired and guided the following work. Our 
approach to these problems is similar to that for the first problem, namely the dual 
study using a combination of numerical and asymptotic techniques. 

In spite of the fundamental nature of this general case of basic flow, it has received 
surprisingly little attention in the past (except, of course, for the two particular 
examples of Couette flow and plane Poiseuille flow), although Cowley & Smith (1985) 
did present some aspects of the associated stability analysis, but focused on the 
configuration where the wall was sliding in the same direction as the main body of the 
flow. The general basic flow and perturbation equations are derived in $2; our 
numerical schemes are described in $3. In $4 the particular case of plane Poiseuille flow 
is investigated, and our results are compared to previous analysis and numerical work. 
The second case (with the flow at the lower wall on the verge of reversing) is considered 
in $ 5 ,  whilst in $6 the conditions pertinent to the long driven-cavity case are described. 
Our conclusions are given in $7. In the Appendix, the effects of small amounts of 
slippage (of either of the channel walls) on a particular class of eigensolutions for the 
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plane Poiseuille flow problem is investigated, and confirms (and indeed sheds more 
light on) some of the observations found in the paper. 

2. Formulation of the problem 
We consider the two-dimensional flow through a long straight channel of width 21, 

with U, being a representative velocity scale, and v is the kinematic viscosity of the fluid 
(assumed constant). We take ( lx ,  Zy) to be the coordinate system, with x = 0 lying at 
some arbitrary location (for example the position of the channel entry or of the cavity 
wall), and y = 0 lying along the centreline of the channel, and so the walls are located 
at y = f 1 .  The Reynolds number is then defined to be 

R = U,l/v. (1) 

We take the dimensional velocity vector to be U, u with u = (u, v), and pressure to be 
pU:p, where p is the fluid density (also assumed constant). 

The non-dimensional form of the Navier-Stokes and continuity equations are then 
written 

Du 1 
~ Dt = -vp+-v2u, R 

and v - u  = 0. (3) 

On account of the two-dimensional nature of the flow, we find it convenient to 
introduce a stream function Y(x, y ) ,  defined in terms of the velocity vector u = (a Y/ay, 
-aY/ax). Equations (2) and (3) above may then be combined, and written in the 
following form (assuming the solution to be independent of time) : 

We now consider the base flow in the channel. A general flow driven by a constant 
streamwise pressure gradient, together with an upper boundary ( y  = 1) moving 
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tangentially with speed V and a stationary lower boundary (y = - 1) yields the 
following exact, general solution to (4) : 

YdY) = ~[V(Y3++2-Y)+Y(3Y-Y3)1. ( 5 )  

This corresponds to flow with a mass flux of y per unit width. 
Following Wilson (1969), Bramley & Dennis (1982, 1984) and Bramley (1984), we 

now seek steady perturbations to this solution, by assuming a stream function of the 
form 

where C.C. denotes the complex conjugate. Here we assume $( y) is O( l), in general, and 
that 1x1 % 1 ; the constant a is an eigenvalue determining the decay of the perturbation, 
which may be real or complex. The determination of the values of a is the main focus 
of attention of this paper. Since we assume that 1x1 9 1, the perturbation term is 
relatively small compared to the base solution. The smaller IRe(a)l the further 
upstream/downstream any end effects are transmitted (where Re(a) denotes the real 
part of a). Substituting (6) into (4), and neglecting terms O(exp(-2ax)) leads to the 
following equation : 

‘ y ( 4  Y) = yd(Y) + MY) exp (- 01.4 + c.c.1, (6) 

The appropriate boundary conditions are entirely homogeneous, and are those of 
impermeability and of no slip, namely 

$( & 1) = $’( i- 1) = 0. (8) 
The system (7) represents an eigenvalue problem for a, and may be regarded as a 

stationary (steady) Orr-Sommerfeld system. Viewed in an alternative way, (6) may be 
regarded as being the Laplace transform of the (perturbed) flow field; then poles in 
transform (a) space are directly related to the location of eigensolutions of the 
homogeneous problem. These poles will then be responsible, to a large extent, for 
determining the 1x1 % 1 nature of the flow. The inversion of the transformed solution 
from a- to x-space involves an integration in a-space. For x > 0, this must be carried 
out entirely in Re(a) > 0, and for x < 0, this must be carried out entirely in 
Re(a) < 0. Values of Re(a) > 0 constitute solutions valid downstream of some flow 
event, whilst values of Re(a) < 0 represent solutions valid upstream of some flow 
event; therefore the perturbation quantity determines to a large extent the manner in 
which the base flow solution is approached. Related arguments (albeit in the context 
of Fourier transforms) have been elucidated by Bogdanova & Ryzhov (1983) and 
Duck (1989, whilst a clear application and occurrence of stationary eigenmodes is to 
be found in the channel flow work of Dennis & Smith (1980). 

In general, the system (7), (8) requires a numerical approach, and we consider the 
numerical schemes used in the following section. 

3. Numerical methods 
Two very different numerical schemes were employed in this study - a local iterative 

scheme, and a global method. The local scheme was based on a fourth-order 
Runge-Kutta method, which required an initial ‘guess ’ for the eigenvalue, followed by 
Newton iteration in order to determine the correct value for a. The advantages of this 
scheme were that it was easy to program, and used very small amounts of storage space 
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and computing time. However, this approach only yields one solution per calculation, 
sometimes making it difficult to build up an overall picture of solution space. Also, 
problems were encountered with convergence, particularly when the Reynolds number 
was large, and when computing complex eigenvalues. 

The global method involved representing $(y )  and is derivatives in terms of an 
expansion of Chebyshev polynomials. This is the method used by Bramley & Dennis 
(1982), and is based on a scheme of Orszag (1971) in his investigation of temporal 
stability of the Orr-Sommerfeld equation. The details of this numerical scheme can be 
found in Stocker (1992), but briefly, the solution is expressed in terms of (a finite 
number of) Chebyshev polynomials, and exploiting the orthogonal nature of these 
polynomials leads to a (linear) generalized eigenvalue problem of the form 

(€-aF)@ = 0, (9) 

where @ = (a3$, a24, a49 $ I T 7  (10) 
which can be solved to find the eigenvalues a. The matrices € and F are 
0((4N- 12) x (4N- 12)), where Nis the number of Chebyshev polynomials considered, 
and 4 consists of the set of Chebyshev coefficients. The NAG Library routine, F02BJF, 
was employed to solve (9), using the QZ algorithm of Moler & Stewart (1973). The 
advantages of this method are that it yields a whole range of eigenvalues and it does 
not require any initial data. The disadvantages are that computing time is 0(43[N+ lI3) 
and storage space is 0(42[N+ l]'), both of which become prohibitive for N large; also, 
some spurious eigenvalues are generated. 

Our results were produced using a combination of these techniques. Finally, on 
account of the nature of (9), both a and its complex conjugate are eigenvalues; this will 
be implicitly assumed throughout the paper. 

4. Plane Poiseuille flow: Yi (y )  = ( y 2  - 1) 
For this case we set V = 0 and y = -$ in (5); this leads to the familiar quadratic 

velocity distribution, appropriate to flow through infinitely long straight channels with 
a constant streamwise pressure gradient. This particular problem has been studied in 
the past by Wilson (1969), and more recently by Bramley & Dennis (1982, 1984), and 
Bramley (1984). These latter papers were useful benchmarks for our numerical 
schemes. We undertook a thorough numerical investigation of this problem, starting 
at R = 0, up to R = 4000. 

Before we continue, it must be noted that a differently scaled form of !Pi(y) was used 
in Wilson (1969) and Bramley & Dennis (1982), than has been used in this work. This 
not only results in the Reynolds number differing by a factor of 1.5, but it also implies 
that the upstream (Re(a) < 0) eigenvalues found in Wilson (1969) and Bramley & 
Dennis (1982), correspond to our downstream (Re(&) > 0) eigenvalues, and vice versa. 

Our main check for the numerics in this case is with Bramley & Dennis (1982), which 
uses essentially the same global numerical scheme as in this work. For the complex 
eigenvalues in Bramley & Dennis (1982), the negative values agree exactly, and the 
positive values agree up to at least four decimal places, the discrepancy being due to 
the larger magnitude of the positive eigenvalues. The real eigenvalues also compare to 
at least four decimal places. 

Although results have previously been presented for this problem, we believe these 
are not quite as comprehensive as some of our results described below. The symmetric 
nature of Poiseuille flow results in two distinct types of eigenfunctions - odd and even 
eigenfunctions about y = 0. 
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FIGURE 3. Odd eigenvalues for plane Poiseuille flow: (a) Re(a) > 0, (b) Re(a) < 0, (c) Im(a). 



4.1. R < 1 modes 
At R = 0, all eigenvalues are complex. Following Wilson (1969), for R 6 1, asymptotic 
expansions of the form 

4 = Jo+RJ,+ ... (1 1) 

and 01 = 2 , + R E 1 + . . .  (12) 

can be used. The leading-order behaviour of the eigenvalues 01 is found by solving the 
equation 

the positive sign giving 2, for the odd eigenvalues, and the negative sign for the even 
eigenvalues. Higher orders of approximation can be considered using standard 
techniques. 

As R increases, branching of eigenvalues occurs, resulting in a ‘honeycomb’ pattern 
in (R, Re(a))-space, with the eigenvalues switching between complex conjugate pairs 
and real distinct values (or vice versa) at each branch point. These are shown in figures 
3 (a), 3 (b) and 3 (c) (figures 3 b and 3 c showing the real and complex parts respectively) 
for the odd eigenvalues, and in figures 4(a) and 4(b) for the even eigenvalues. A 
formula can be deduced to give the number of ‘changes’ from complex to real, or real 
to complex, before the eigenvalues take on their ‘ R  9 1’ behaviour, i.e. before they 
become permanently real as R increases. This is applicable to all modes, except the first 
even mode for Re(a) < 0, which is a special case : the Pth mode has 2P- 1 changes (valid 
for P >, 1). 

We now move on to consider the eigenvalues in the limiting case of high-Reynolds- 
number flow. 

4.2. R 9 1, 01 = O(1) modes 
First we look at the O( 1) real eigenvalue family found for Re(a) > 0. This family has 
been the subject of some disagreement, as the numerical work of Bramley & Dennis 
(1982) failed to identify the O(1) family predicted by Wilson (1969) in his analytic 
work. Our numerical work resulted in an O( 1) family of eigenvalues with Re(a) > 0, 
whereas Wilson predicted eigenvalues with opposite sign (taking into account the 
different notation used). The analysis of these modes does closely follow that of Wilson 
(1969), and in fact is identical until the inner expansion about y = - 1 is considered. 

sin22, = fg,, (13) 

To recap, we take the solution to have the form 

4 = 4 , + ~ 1 n e 4 , + ~ 4 ~ + . . .  (14) 

and 01’ = a ~ + s l n s a ~ + E a ~ +  ..., (15) 

where E = l/(ao R)’I3 is a small parameter. Substitution of these expansions into (7), 
leads to 

Dl40 = 0 (16) 

and D1$$ = - a~#, for i >  0, (17) 

where D, is the differential operator given by 

Equation (16) was solved numerically by utilizing the expansions (obtained by 
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FIGURE 4. Even eigenvalues for plane Poiseuille flow: (a) Re(a) > 0, (b) Re(a) < 0. 

applying the method of Frobenius, but see also Wilson 1969) about the pointy = - 1, 
namely 

and 

where s = y + 1, with Is1 4 1. Considering the inner expansion close to s = 0 leads to the 
introduction of a stretched coordinate 9 = (y + l)/e, and the expansion 

(21) 

(19) 
(20) 

f,(s) = s-+p,&s3+ ... 
f,(s) = 1 + . . . - fi(s) Ins, 

$ - 460(9) + e In &r> + e6,(r) + . * .I, 
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Solving (22) leads to 
&(f) = C, Ai(f) + Do Bi(f), 

where C, and Do are constants, f = P 3 7  and Ai($) and Bi(f) are the two Airy 
functions. Rejection of Bi($) (which is a non-physical solution to the problem), and 
integration of (26) leads to 

do($) = Co Ai(f,) df, df, + $4 d6 (f = 0) + &(f = 0). 
0 0  d7 

Application of boundary conditions on 7 = 0, and consideration of the limit 7 + + 00 
results in a form of the inner expansion which can be used to match onto the outer 
expansion. Including terms O(e), the limiting form of the inner expansion is 

(28) 
C,,, b = C,, Ai'(0) and for normalization purposes we set Co = 3/2'13. 

$ - a ( q  -+e2y2) + be( 1 - €7 In T), 

where a = 
The outer expansion is of the form (see (19) and (20)) 

$ = (A,  + e1n e ~ l  + €A,  + . . .) (s-y+; s3 + . . .) 
+( B,+elneB,+eB,+ ...)( 1+ ...--f,( s)lns), (29) 

where Ai and Bi are constants. Matching (28) and (29) yields boundary conditions for 
$,, $1 and $2 on y = - 1. 

In view of the symmetry of the problem, it is necessary to consider only half of the 
channel, say - 1 ,< y d 0. So in order to solve (17) (to find a1 and a,), we require the 
boundary conditions for $,,, 4, and 4, at y = 0. These were discussed by Wilson (1969), 
and are as follows: 

$,,(O) = 0 for$odd, (30) 

$h(O) = 0 for $ even, (3 1) 

$1(0) = 0 for$odd, (32) 
$i(O) = 0 for $ even, (33) 

$2(0) = 0 for$odd, (34) 

(35) 

{ 
$1(-1) = 0, { 

{ &(O) = 0 for r$ even. 

$,(- 1) = 0, $X- 1) = 1, 

$z( - 1) = (3/2'13) Ai'(O), 

We are now in a position to solve (17), using adjoints. This leads to a1 = 0, and 
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FIGURE 5. Eigenvalues for plane Poiseuille flow : comparison between numerical (-) and 
asymptotic (----) R 9 1 results, for a = O(1) modes. 

Eigenvalue a, a1 a2 
mode 1 2.5892 0.00 -3.2365 
mode 2 4.3188 0.00 -4.0343 
mode 3 5.9705 0.00 -4.9446 
mode 4 7.5919 0.00 -5.8842 
mode 5 9.1979 0.00 -6.8355 
mode 6 10.7947 0.00 -7.7927 

TABLE 1. Eigenvalues of Poiseuille flow 

Note that since (16) is self-adjoint, $t = $,. The numerical results for the first six modes 
are given in table 1. 

Figure 5 shows the first three odd and first three even eigenvalues of this family with 
increase in Reynolds number. The dashed line is the asymptotic approximation for a 
given by 

a - a. +1a2 2 2  a-4/3Rp1/3 0 for a, =+ 0, (38) 
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Eigenvalue 
do 

mode 1 
mode 2 
mode 3 
mode 4 
mode 5 
mode 6 

q ( y )  = ( y z -  1) c ( y )  = i ( y +  1)2 Re(&) > 0 Re(&) < 0 

- 21.680 25.308 46.077 - 169.45 + 19.681 
-28.221 46.752 94.006 - 549.86 +43.83i 
-73.308 124.74 408.48 - 1146.1 +69.8i 
- 86.284 174.74 580.04 - 1958.2 + 96.91 
- 156.65 302.27 1216.5 
- 175.94 382.33 1526.5 

TABLE 2. 0(1/R) eigenvalues 

and the solid line represents the value of the eigenvalue found by solving the full system 
(7). It appears that the asymptotic approximations improve for higher modes, the 
reason being that our analysis is based on the assumption that lei 4 1, and will be 
smaller for larger values of a,. 

The difficulty with Wilson’s (1969) approach is that it is not possible to correctly 
match his wall-layer solution (close to y = - 1) with the outer inviscid solution, if 
Re(a) < 0. This is not a problem, however, if Re(a) > 0. 

4.3. R 9 1, a = O(R-1/7) modes 
Setting a, = 0 in (15) results in two eigenvalues developing in the form 

Equation 39(a) corresponds to the ‘upstream’ eigensolution as found by Smith (1977), 
and is a positive real even mode. Equation (39b) is an even mode, which remains 
complex for all Reynolds numbers, and has Re(a) < 0. It can be seen in figure 4(b) and 
was also found in other studies (Wilson 1969 and Bramley & Dennis 1982) (see the 
Appendix). 

4.4. R + 1, a = 0(1/R) modes 
The other downstream eigenvalue families for R + 1 all turn out to have a = 0(1/R), 
and following Wilson (1969), their expansions take the form 

and 
1 .  1 .  1 .  
R R Z 1  

a = -&,+-a +p2.... 

Neglecting terms of 0(1/R) in (7) we obtain the equation 

&+b0(y”1)4g-2b,4, = 0, (42) 

which can be solved numerically (in much the same way as (7)), applying the 
impermeability and no-slip boundary conditions, to give b,. Table 2 shows the results 
thus obtained. The asymptotic and numerical results are graphically indistinguishable 
for R 9 1, and are therefore not presented graphically. These eigenvalues also agree 
with the results of Wilson (1969), when the differing form of Y,(y) is taken into 
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account. Physically, we are interested in the eigenvalue whose real part is smallest in 
magnitude, as this will be the eigenvalue which corresponds to the mode that persists 
further (decays slowest) downstream. This is the eigenvalue of the form 

a - - 21.68/R + O(1/R2). (43) 
In summary, as R+m, for Re(a) > 0 there exists one real O(1) eigenvalue family, 

and one real eigenvalue O(R-l17); for Re(a) < 0 there exists one real O(l/R) eigenvalue 
family, together with one complex eigenvalue O(R-'17). 

In the following section we go on to consider a particular combination of y and V 
that almost leads to flow reversal at y = - 1. 

5. The intermediate case: Y ; ( y )  = a(y+ 1)2 
If V = 1 and y = $then the velocity profile above is obtained. The interesting feature 

of this basic flow is that Yt( - 1) = Y;( - 1) = 0, and so it is a marginal case, on the 
verge of reversing on the lower wall. The eigenvalues obtained by solving the full 
system (7) are shown in figure 6(a) (Re(a) > 0 ;  the imaginary part of a is not shown 
in the interest of brevity) and 6(b) (Re(a) < 0 ;  note that this is a real family of 
eigensolutions). As in the previous case, branching of eigenvalues occurs for R small. 
At R = 0, the complex eigenvalues found from the solution of (13) are valid for any 
Yb(y),  and thus are valid here. For R $- 1, it appears that we once again obtain an 
O(l/R) real eigenvalue family for Re(a) > 0 and an O(1) real eigenvalue family for 
Re(a) < 0. 

5.1. R $- 1, a = O(l/R) modes 

Starting with the downstream (Re(a) > 0) eigenvalues, our numerical investigation 
leads us to seek, asymptotically, an O(I/R) eigenvalue family as R+co. Expansions 
(40) and (41) are again substituted into (7) resulting in the leading-order equation 

$:+d,;(y+ 1)2$;[-;do$o = 0, (44) 

which can be solved in much the same manner as (7) and (42), to give do. Table 2 shows 
the results thus obtained. Once again the asymptotic and numerical results are 
graphically indistinguishable for R 9 1. 

5.3. R % 1, a = O(1) modes 
For Re(a) < 0, we now seek an O(1) real eigenvalue family as R-tco, and proceed in 
a similar manner to the previous case. The nature of these eigenvalues is altered, 
however, because in this case not only !Pi( - 1) = 0, but also Yt( - 1) = 0. The solution 
in the core region turns out to develop in the form 

and 
# = $o+S$l+S2$2+.. .  

a2 = a:+Sa:+S2a;+ ...) 
(45) 

(46) 

where S = 1/( -ao R)1/4 is a small parameter. Substitution of these expansions into (7) 
results in 

D,$O = 0, (47) 

and D , $.=-  a:$, for i >  0, (48) 

where D, is the differential operator 

d2 2 
' -dy2 ' (y+l) , '  

D =-+a,-- (49) 
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FIGURE 6. Eigenvalues for the intermediate case: (a) Re(a) > 0, (b)  Re(a) .c 0. 

The method of Frobenius yields the following behaviour for the two linearly 
independent solutions as s + 0 : 

and 

4 4 4 g,(s) = s2--s +- s6+ ... 

1 a2s  a33 
g (s) = -+L--- + ... , 

10 280 

s 2  8 
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where again s = y +  1. Considering the inner expansion close to s = 0 leads to the 
introduction of the stretched coordinate < = (y + 1)/6. The inner expansion in this 
region develops in the form 

(52) $ - 82(60(o + 66Lo + S262(<) + ***I ,  

and L, $2 = a;[+$ - 2 d2/d$I $0, (55) 
with L2 d4/dc4 -$? d2/d$ + f. (56) 

dO(9 - A$ + B/C+ Cexp (-+$I + D exp (g), 

where L , t 0  = 0, (53) 
L2?1= 0, (54) 

One exact solution of (53) is J0 = A$, where A is a constant. The general solution 
which is valid in the limit as <+ + co is 

(57) 
where A ,  B, C and D are constants. For a physically realistic solution, we require 
D = 0. The limit of the inner expansion as <+a is then 

Recasting this in terms of s leads to 
$(a - A62($+O(62))+B62(l/f:+O(62)).  (58) 

1 a;s ats3 
s 2  8 

$ - (A+o(s'))(s'--s 4 4 +...)+( ~S"+o(s")) -+---+...). (59) 10 

This must be matched with the outer expansion as s + 0 which is taken to be of the form 

$ = (Ao+6Al+62A,+S3A3+s"A4+ ...) ( s2--s ;i 4 +-s 2$o 6 +... 

+(Bo+6B1+62B2+63B3+S4B4+ ...) 

where Ai and Bi are constants. 

Writing 

where @( Y )  is O( I), leads to a general solution of the form 

In order to solve (47) we must also investigate the upper wall layer on y = + 1. 

$ = 62@(Y)+ ..., (61) 

where KO, K,, K3 are constants, and Y = (y- 1)/6,. Application of the no-slip and 
impermeability boundary conditions on y = + 1, and consideration of only physically 
realistic solutions to the problem gives 

Normalizing by setting K3 = - 1 leads to the requirement that, as y + 1, 

where e.s.t. stands for exponentially small terms. Therefore (also taking into account 
(59) and (60)) the relevant boundary conditions for the core solution terms $i are as 
follows : 

$(y) = -K3[1 + Y-efY]. (63) 

$(y) = (y-1)+d2+e.s.t. (64) 

$ o ( -  1) = 0, $0(1) = 0, (65) 
$X- 1) = 0, 4x1) = 1, (66) 
$1(- 1) = 0, $1(1> = 0, (67) 
$A- 1) = 0, $20) = 1. (68) 
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Eigenvalue a, a1 a2 

mode 1 -2.2467 0.00 1.1234 
mode 2 -3.8626 0.00 1.9313 
mode 3 -5.4521 0.00 2.7260 
mode 4 -7.0331 0.00 3.5165 
mode 5 -8.6104 0.00 4.3052 
mode 6 -10.1857 0.00 5.0928 

TABLE 3. Eigenvalues for the intermediate case 

As with the previous case, (48) can be solved using adjoints. This results in a1 = 0, and 

J $ t $ o d ~  
- 1  

where, again $t = 9,. 
The numerical details are given in table 3, obtained using a Runge-Kutta scheme. 

Figure 7 compares the numerical and asymptotic results. The dashed line gives the 
asymptotic approximation given by 

a - a,, +;a:( - ao)-5/2R-1i2 for a. $; 0, (70) 

and the solid line is the value of the eigenvalue found by solving (7). The agreement is 
not unsatisfactory, in particular the lower modes give good agreement, and the 
numerical and asymptotic values are seen to converge as R increases. 

6. The driven-cavity case: Yh( y )  = $(y + 1) (y -$) 
In the case of a basic flow driven solely by the sliding top (V = l), with no imposed 

streamwise pressure gradient and with no net mass flux (y  = 0), the fully developed 
velocity profile must take on the above form. The flow cannot be unidirectional, and 
indeed reverses (relative to the upper boundary motion) for y E [ - 1, $1. Figures 8 (a)  
and 8(b) show the Re(a) > 0 and Re(a) < 0 (respectively) eigenvalue families for this 
case obtained by solving (7) numerically. Some branching at low Reynolds numbers 
occurs as with the previous two cases, but not in a nearly so regular fashion. All the 
eigenvalues originate in a complex form (from the solution of (13), as before) and 
develop into four distinct eigenvalue families for R >> 1. 

Consider first the downstream eigenvalues, i.e. those with Re(a) > 0. These turn out 
to consist of two real eigenvalue families - an O( 1) and an O( 1 / R )  family. 

6.1. R >> 1, a = O(1), Re(a) > 0 modes 
The O( 1) family is of much interest, partly because the eigenvalues turn out to leading 
order to be a scaled form of the O( 1) Poiseuille flow eigenvalues. This can be explained 
by taking expansions for $ and a of the form 

(71) 

(72) 

(73) 

$ = 

a' = a: + cos ((aO R)'/'Z+in) e3/4a: + e In 

+ cos ((ao R)l/'Z+in) e3/4$1 + e In e$' + e$3 + . . . , 
+ 6.01: + . . . , and 

where e = l/(ao R)ll3 is a small parameter, and 

Z = ?j( 1 - (1 / 2/ 3) sinh-l( 1 / 2/2)). 
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FIGURE 7. Eigenvalues for the intermediate case: comparison between numerical (-) and 
asymptotic (----) R & 1 results, for a = O(1) modes. 

The cosine terms (involving the square root of the Reynolds number) appear quite 
novel, and are unexpected, but the ensuing analysis and our numerical results both 
conclusively indicate their presence. Substitution of (71) and (72) into (7), and letting 
R+oo results in the equations 

D3 $0 = O> (74) 

and D,$i=-at$O for i > O ,  (75) 
where D, is the differential operator given by 

By considering the transformation 

y = 5(2jj- l), (77) 
we can obtain (16) from (74) (with $ replacing y). Next consider the boundary 
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FIGURE 8. Eigenvalues for the long driven-cavity case: (a)  Re(a) > 0, (b)  Re(a) < 0. 

conditions for f o j  in the case of Poiseuille flow (as considered in §4), the appropriate 
boundary conditions were $J - 1) = $,(1) = 0. In the present case, we again have 
$o( - 1) = 0 due to the impermeability condition on the lower wall. Consideration of 
the singularities and critical layer (see (88)-(97) below) leads us to conclude that 
$,(+) = 0, and results in a simple relationship between the leading-order terms of the 
driven-cavity case (dc), and the Poiseuille flow case (pf), namely 

, g C  = S a P f .  2 0  (78) 



Stationary perturbations of Couette-Poiseuille f low 171 

Mode 1 ,  a, = 3.884 

3 a -:m 
-1 

-1 0 1 

-1 0 1 

Mode 5, a, =13.191 
1 

3 0  
a 

-1 
-1 0 1 

Across the channel 

Mode 2, a, = 6.478 

Iirid 1 -1 0 1 

Mode 4, a, =11.388 
1 

0 

1 
0 1 

Mode 6, a, =16.192 
1 

0 

-I 
-1 0 1 

Across the channel 

FIGURE 9. Eigenfunctions for the long driven-cavity case, R = 2000. 

Figure 9 shows eigenfunctions for these O( 1) real positive eigenvalues obtained 
numerically by solving (7) with the appropriate base flow, at R = 2000. These confirm 
that the eigenfunctions are, to a large extent, confined to the region y E [ - 1, +] in accord 
with the arguments above, leading to (78). 

For later reference, the two linearly independent solutions of (74) about y = - 1 take 
the form 

(79) h,(s) = s-7s 3 2 - 3  s 3 +-s 4 4 + ... , 
6 12 

and 

where s = y+ 1, whilst about y = f the linearly independent solutions take the form 

h,(s) = 1 - . . . - %h,(s) In s, (80) 

and r2(t) = 1 - . . . + (3/2K)f,(t) In t ,  (82) 
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where t = y-$,  and K = f 1 (as a result of the normalization process and 
symmetry/antisymmetry). 

The region YE [$,I] is considered next. Though it is tempting to consider equations 
of the form (74) in this region, this leads to inconsistencies, and it turns out instead that 
in this region a WKB approximation is appropriate. Taking a to be O( l), and retaining 
only the highest-order terms of each derivative, we obtain the equation 

(d4/dy4+aRY;(y)d2/dy2-~01R) $ = 0. (83) 
Looking for highly oscillatory solutions to this problem, the assumption d/dy % 1 
implies 

(84) 
and the first-order WKB approximation to $o in this region is 

(d4/dy4 + aR YU;(y) d2/dy2) $ z 0, 

Here y1 and y 2  are constants, and yo = $. The boundary conditions at y = + 1 (no-slip 
and impermeability) require $( 1) = $’( 1) = 0, which leads to 

(86) 
and (87) 
Equations (86) and (87) serve to determine y1 and y 2  in terms of A and B. 

In order to find a relationship between A and B, we must look in more detail at the 
critical layer at y = $ (this also confirms our boundary condition for $,($)). Using the 
scaled coordinate 7 = (y--$) /e ,  and the expansion 

we obtain 

where di = di(7) and 

The general solution to (89) may be written 

- (1 /aR)  [ A  exp (i(aR)1/21) + B exp (- i(~tR)l/~I)] + y1 + y 2  = 0, 

- ( l/aR)lI2 [ A  exp (i(aR)lI2 I) - Bexp (- i(~xR)l/~I)] + y1 = 0. 

4 - cos ( ( ~ R ) ~ ’ ~ I +  in) c33/4J0(y) + e In sJl(7) + sd2(y) + . . . , 

L, = d4/dy4 + y d2/dy2. 

(88) 

L , $ ~  = o for i =  0,1,2, (89) 

(90) 

&(7)= CiAi(-y)+DiBi(-y) for i=0 ,1 ,2 ,  (91) 
where Ci and Di are constants. Rejecting Bi( - 7) as an 
problem, leads to 

unbounded solution to the 

O)+&q = 0). (92) 

In the limit 7 + + co 

Ci 7-5/4 sin (393/2 +an), (93) 
7 

487~l/~ 
y+CiAi‘(0)+di(y = 0)-- 

whilst as 7 --f - 00 

di - [ -$Ci+$(y = 0) y+CiAi’(0)+&y = 0). 
dd. 1 (94) 
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The oscillatory terms in the limit as T++ co match with the oscillatory (exponential) 
terms in the WKB expansion to give a relationship between the complex coefficients A 
and B, and together with (86) and (87) leads to the following form for the solution in 
the region y E [+, 13 : 

where 

sin ((aR)l/zg( y )  +in) + (1 - y )  cos ((aR)ll21+ in) 
1 

1 7 
Q = h ( ~ )  --C,C~/~ , [ 481~"' 

J 

(96) 

g ( y )  = (2/31/3) {$(y -+)'/,(y + 1)"2(3y + 1) - sinh-l[$2/3(y-+)i]}, (97) 

A = le i (  , aR)'/2, B = -1 ,Qi(aR)1/2, and h(e) is a scaling which will be determined 

$, - K(y-+) as y + i ( y  < i). (98) 

shortly. 
The outer expansion for $ (from (81)) gives 

This must match with 4, as 7 --f - co, and so from (94), 

-+C, + (d$,/dy) (7 = 0) = K. (99) 
This implies h(s) = e and then the linear (and largest) term in the WKB expansion is 
O(e3l4). As there is no O(e) term in the region Y E  [+, 11, 

and 

Equations (99) and (100) give C, = -K, and (101) gives us the boundary condition 
for $3: 

(1 02) 
We now know that the $-expansion in Y E  [+, 11 is, to leading order, of the form 

$3(y  = i) = 0. 

K(1 -y)cos ((aR)'/"+&) €3'4. (103) 
7 

+48x'l" 
This outer expansion for $ is consistent with the inner expansions (93) and (94) 
provided C, = 0 and Jo(7) = (7/72n",) K. The boundary condition for $, arises from 
(103) evaluated at y = i, i.e. 

$l(y = !j) = (7/72n'l2) K. ( 104) 
Finally, in the singular layer, there are no O(e1ne) terms, so = 0 and $z (y  = f) = 0. 

Next consider the boundary layer on y = - 1. This layer has the same structure as 
the layers on y = k 1 for the Poiseuille flow case. The expansions (79) and (80) give the 
outer solution in this region. The inner expansion in this region takes the form 

$ - e ( ~ , ( ~ ) + ~ o s ( ( a R ) ~ ~ ~ 1 + ~ n ) e ~ ~ ~ G , ( ~ ) + e l n e G ~ ( ~ + + G ~ ( ~ )  ...), (105) 

where c = ( y +  l)/e. Equating powers of s, we obtain 

HGo = 0 
where Go = Go(Q and 

This gives 

H d4/dc4 - cd2/d$. 

Gi = A ,  Ai(9 + A ,  Bi([). 
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FIGURE 10. Eigenvalues for the long driven-cavity case: comparison between numerical (-) and 
asymptotic (----) R $ 1 results, for a = 0(1), Re(a) > 0 modes. 

Eigenvalue a,, a1 a2 a 3  

mode 1 3.8837 -0.3241 0.000 -4.5875 
mode 2 6.4782 -0.4040 0.000 -5.7183 
mode 3 8.9557 -0.4951 0.000 -7.0086 
mode 4 11.3879 -0.5891 0.000 -8.3404 
mode 5 13.7968 -0.6845 0.000 -9.6889 
mode 6 16.1921 -0.7803 0.000 -11.0455 

TABLE 4. Eigenvalues for the driven-cavity case 

Rejecting, again, Bi(a as an unbounded solution to the problem, and applying the 
impermeability and no-slip boundary conditions for q5 we obtain 
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FIGURE 11. Complex eigenvalues for the long driven-cavity case, Re(ol) < 0: comparison between 
numerical (-) and asymptotic (---) R & 1 results, for CL = 0(1/R) modes. 

and so Q0 + $Co <+ Co Ai'(0) (1 10) 
in the limit as 5- + cc. Matching the inner and outer solutions implies Co = 3 and this 
gives the boundary condition for $3 on y = - 1. 

The boundary conditions for the $i are as follows: 

$ o ( -  1) = 0, $,G> = 0, (1 11) 
$;(-1) = 1, $X$) = K,  (1 12) 
A(- 1) = 0, = (7/72dl2) K,  (1 13) 
$2(- 1) = 0, #2(3 = 0, (1 14) 
$3( - 1) = 3Ai'(0), $,($) = 0. (1 15) 

We are now in a position to solve (75) using adjoints. This leads immediately to 

J'  $ t $ o d ~  
-1 

where $t = $o, as before. The asymptotic representation for a takes the form 
a - uo + ~ O S  ((ao R)"' 1+in) a: a;514 R-'/* + la2 2 3  a-4/3R-1/3 0 for a. $: 0. (117) 



176 J.  R. Stocker and P .  W. Duck 

1.4 

1.2 

1 .o 

0.8 z? 
W 

0.6 
2 

0.4 

0.2 

0 
0 1000 2000 3000 4000 

R 

FIGURE 12. Eigenvalues for the long driven-cavity case, Re(oc) > 0: comparison between numerical 
(-) and asymptotic (---) R 4 1 results, for a = 0(1/R) modes. 

The numerical details are given in table 4, and a graphical comparison of the 
asymptotic (broken lines) and numerical values of a, over a range of R112 is shown in 
figure 10; the comparison is encouraging. The qualitative features of these 
eigensolutions are also confirmed by the (fully) numerical results shown in figure 9, 
which indicates (relatively) low-frequency large-amplitude oscillations between y = - 1 
and y z f, and high-frequency small-amplitude oscillations between y z f and y = 1. 

6.2. R 9 1, a = O ( l / R )  modes 
For R 9 1 ,  two O ( l / R )  eigenvalue families are found - one real family with Re(a) > 0, 
and one complex family with Re(&) < 0. If expansions (40) and (41) are substituted 
into (7), and terms of O(l/R) are neglected, we obtain the equation 

( 1 1 8 )  
which can be solved numerically to give do. Numerical results for the first few 
eigenvalues are given in table 2. Figure 11 shows a comparison between the numerical 
and asymptotic (dashed lines) results for the complex family of eigenvalues (Re(a) < 0, 
generally the O(l/R) family, although one of the O(1) modes is also perceptible). 
Figure 12 compares the numerical and asymptotic results (dashed lines) for the 
Re(a) > 0, O ( l / R )  family of eigensolutions. 

6.3 .  R 9 1 ,  a = O(1), Re(a) < 0 modes 
Only two members of the complex O( l), Re(a) < 0 eigenvalue family were found. They 
are generated in a different manner to the O(1) eigenvalues found for Re(a) > 0, 
and the two previous cases: the eigenvalues are solutions of (74) over the interval 
YE [- 1 , 1 ] .  Solving this equation numerically (using a Runge-Kutta approach) in 
this region causes problems due to the singularity in Y;(y)  at y = f. This difficulty 

@ + d0$(y + 1 )  ( y  - f) @;-;do (b0 = 0, 
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was circumvented by extending the solution into the complex y-plane to avoid the 
singularity. The two values of a thus obtained are a. z (-2.74, 0.77), (-0.71, 1.45). 
The variation of the second of these two modes at finite Reynolds number is to be seen 
on figure 11. 

7. Conclusions 
For low Reynolds numbers, the eigenvalues in all cases considered are complex, and 

indeed become independent of the base flow at R = 0, and generally undergo 
branching processes as the Reynolds number is increased. For higher Reynolds 
numbers, the eigenvalues found can be classified in terms of distinct eigenvalue 
families; these are summarized in table 5. 

Asymptotic forms of the eigenvalue families have been described in all three cases, 
The asymptotic approximations have been compared to the solution of the full 
equations, and the correlation has, in general, been good. The validity of the numerical 
results obtained was confirmed by comparison with the results of Bramley & Dennis 
(1982), for the first case, and in all three cases the Runge-Kutta shooting method was 
used as an independent check. 

Note that in the general situation it will be the eigenvalue of smallest wavenumber 
(i.e. longest wavelength) that persists furthest downstream/upstream, and so in the 
R+co limit will correspond to the a = O(l/R) family of eigenmodes. Nonetheless 
larger-wavenumber eigenmodes can still be important if disturbances of compatible 
scale are introduced into the flow. For example, a disturbance of streamwise extent 
O(R-lI7) and transverse dimension O(RP’) introduced close to either of the walls would 
trigger, predominantly, the a = O(R-‘/’) modes described in this paper (see for 
example Smith 1982). 

There are a number of fairly general observations to be made from table 5 regarding 
the nature of the eigenvalue families for R B 1. The O(R-1/7) modes seem to be 
confined to the plane Poiseuille flow case, as confirmed in the Appendix, where it is seen 
that as the magnitude of the wall velocity increases, other modes form, and then the 
corresponding eigenvalues a either increase or decrease, presumably ultimately 
becoming members of the a = O( 1) or a = O( 1/R) families respectively. 

The a = O( 1) eigenvalues seem to be generally associated with upstream-decaying- 
type eigenmodes ; these tend to be real eigenvalues and are physically/intuitively 
correct insofar as these eigenvalues indicate that the upstream effects as a result of these 
modes are felt only a distance O(1) upstream (compared with a distance O(R) 
downstream as a result of the a = O(l/R) family of eigenvalues). Notice that from our 
definition of basic flow, upstream-decaying modes correspond to Re(a) > 0 for plane 
Poiseuille flow, and Re(a) < 0 for the intermediate case; this ‘inconsistency’ in 
notation was chosen to obtain better consistency with the driven-cavity case. 

The a = O(l/R) eigenvalues appear, on the whole, to be associated with 
downstream-decaying modes, which, generally fill the entire channel/cavity cross- 
section. Certainly, for R 9 1, eigenvalues for the plane Poiseuille flow case and the 
intermediate case are all (with just one exception) real. On the other hand, the driven- 
cavity case is somewhat different in possessing (many) complex eigenvalues. However, 
this particular case is fundamentally different, since talk of ‘upstream’ or ‘downstream’ 
is misleading, due to the multi-directionality of the flow. In spite of this, for this case 
the Re(a) > 0, a = O( 1) family of eigenvalues are real, and are of an interesting nature. 
They could be construed as being upstream-decaying modes, since these modes, to 
leading order, take on a predominately inviscid nature between the lower boundary, 
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Flow type Re(a) > 0 Re(a) < 0 

O( 1 )  real eigenvalues 
O(R-”’) real eigenvalues 

O( 1 / R )  real eigenvalues 

O( 1 )  real eigenvalues 
O( 1 / R) real eigenvalues 

Poiseuille flow 
%Y) = (Y2- 1) 
Intermediate case 

Driven-cavity case 
W Y )  = 4(Y+ 1)(Y-$ 

O( 1 /R) real eigenvalues 
O( R-”’) complex eigenvalue 

O( 1) real eigenvalues 

O( 1 / R) complex eigenvalues 
O( 1) complex eigenvalues 

Y L Y )  = %Y + 

TABLE 5. Summary of eigenvalue families, for R & 1 

and the point of flow reversal, and the wavenumbers to leading order are directly 
related to the O( 1) family of eigenvalues found in the case of plane Poiseuille flow. On 
the other hand, these eigenmodes take on a somewhat novel nature between the point 
of flow reversal and the upper boundary, being highly oscillatory, and very much 
dependent on viscosity. This suggests a highly nonlinear structure as the amplitude of 
the disturbance increases. This aspect is worthy of further attention, particularly 
because there seems to be every reason to suspect that this type of (eigensolution) 
behaviour would be a generic feature, applicable to many flows of this type at high 
Reynolds numbers. The Re(a) < 0, a = O(1) modes for the driven-cavity case seem 
quite different. We were able to find only two members of this family, and these 
eigensolutions fill the entire channel/cavity cross-section. There is some evidence that 
flow reversal causes eigenvalues to become complex, although the 0(1/R), Re(a) > 0 
driven-cavity eigenmodes provide counter-examples to this. However, if we consider 
the solution of (118) in the limit as 8,++00, then we obtain the equation 

(v+ l)(y-+)&-2$& = 0, (1 19) 

which is, to leading order, the same equation as obtained for the Re(a) > 0, a = O(1) 
family of eigensolutions (equation (74)). Indeed, our numerical results (confirmed 
by asymptotic analysis very similar in detail to the a = O(1) analysis) indicate that 
as 8, + + 00, the eigenfunctions become progressively compressed into the region 
- 1 < y < a. As a consequence, (1 19) leads to purely real solutions. In many ways, 
this similarity with the results for a = O(1) real eigenvalues is to be expected, on 
account of the ‘overlap’ that must occur when go = O(R). 

One final consideration here is the question of the stability of these classes of flow. 
As noted earlier, some aspects have been considered by Cowley & Smith (1985). 
However a number of possibilities exist, even though the basic flow profiles considered 
here are non-inflexional. One (strong) possibility, particularly relevant to our third 
class of basic flow, is that of absolute instability. This aspect will be the subject of 
further work. Additionally, three-dimensional effects would be of great interest. 

The work of J.R.S. was supported by an EPSRC studentship. A number of 
computations were performed using computer facilities provided by EPSRC. 

Appendix 
We consider here the effect of a small boundary slip on the a = O(R-’l7) (defined in 

(39)) mode for the plane Poiseuille flow case of 34, in order to further confirm the 
general nature of the eigensolutions when flow reversal is present. 

We suppose that the upper boundary has a slip R--2/7 f ,  f = O(1). The process is 
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then similar to that of Wilson (1969) and Smith (1977). In the core the solution is 
expected to develop as 

where 

The governing equations are then 

$ = $o+R-217$l+ ..., Yo = $o+R-217$l+ ..., a: = R-’I7 a:o+.. . ,  (A 1) 

$; = y2-1, $ J  1 = -  :fY+l)(Y-;). ( (A 2) 

(A 3a, b) 

where D, G d2/dy2 - 2/(y2 - 1). (A 4) 

$0 = @;, (A 5 )  

D4$,, = 0, D4$l = -ai$o-$i-+$o- 1C.i $.p‘ 
I% k;’ 

Equation (A 3 a) has the exact solution 

which satisfies the required boundary conditions. When considering (A 3 b), adjoint 
theory leads to the solvability condition 

and, again, since (A 3 a) is self-adjoint, $t = $o, and by consideration of $o near y = & 1 
we obtain 

We also require the boundary conditions for $l. On y = + 1, we consider the stretched 
coordinate 7 = (1 - y) R2/’ and the expansion for $ of the form 

- 1) $+’( - 1) - $1( 1) $t’( 1) = I?[ -gat - 2 f], (A 6) 

$Y(-l) = - 2K, $+’( 1) = 2K. (A 7) 

$ - R-217J0 + R-4i7c& + . . . , 
which gives JF-2a0(7-;f)J; = 0, (A 9) 

(A 8) 

to leading order. Discarding the exponentially growing solution, this leads to 

Jo = KO f r’ Ai(&) d i 2  df, + Kl 4 + K2, (A 10) 
0 0  

where KO, Kl and K, are constants, and ij = (2a0)li3(7 - i f )  (noting 7 E Re and 7 > 0). 
Since Jo(7 = 0) = 0, and &(7 = 0) = 0, then 

lop ( 2 4  2 

Kl = KO Ai( - f 2 )  df2 = KO A( f )  (A 11) 

and K2 = Ko[Ai’( - ~ P ( ~ C Z ~ ) ~ / ~ ) - A ~ ’ ( O ) ]  = KoB(P).  (A 12) 
To obtain boundary conditions for $1 on y = 1, we need to consider (A 10) (the inner 
solution) in the limit as $-fa (to match with the outer solution). We find 

(A 13) 

(A 14) 

(A 15) 

(A 16) 

(A 17) 

1: 1 Ai(+,) d f 2  d?, --f - i + Ai’(0) 
3 

= 5(2a0)1/37 + Ai’(0) -a ff(2a0)1/3. 

Assuming arg (at/3) E (-in, in), (A 10) yields 

By matching with the outer solution at y = + 1, we obtain KO = - 21?/[(2a,)’/~(A +$)I, 
and also 

The value of 

Jo -f Ko[(A( P) +f) + + Ai’(0) + B( f)] .  

$1( 1) = K f -  2K(Ai’(O) + B( f))/(2aO)li3(A( f )  + f). 

$1( - 1) = - (6/(2aOy3) Ai’(0) I?. 

- 1) may be deduced from the above by setting f = 0, to yield 
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FIGURE 13. Variation of a, with P; (a)  Re(a,), (b)  Im(a,). 

The solvability condition yields the following dispersion relationship for a, : 

Note that when f = 0, then A(0)  = B(0) = 0, and we obtain the plane Poiseuille flow 
results (effectively (39)), namely 

(A 19a, b) 

The first of these corresponds to the complex (downstream) root of Wilson (1969), the 
second to the real (umtream) root of Smith (1977). Figure 13 shows the evolution of 

a. = :[ - 90Ai’(0)I3/’, a, = 3 P i ’  [ - 90Ai’(0)l3’’. 
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the above two eigenvalues as P changes, with (A 19a) denoted by the broken line. 
Figure 13 does not represent all eigenmodes (but only the most important/slowly 
decaying), as detailed below. There are a number of important features observed in this 
figure, which we consider in turn. 

Consider the limit f+ - 00 ; this turns out to be the simpler limit, with just the two 
original modes. Both values of laol appear to grow in this limit. Our (numerical) results 
suggest (A 19 b) remains real as f decreases, and that A + -$ and B + - Ai’(0). This 
being the case, utilizing the asymptotic form for the Airy function for large argument 
(which lies within the decaying segment of complex space), leads to 

As F+ - 00, the complex (downstream) root eigenvalue seems to have A + - f, with 
B oscillating and growing (slowly). In this case, it appears that we have arg(a,) + n, and 
so the argument of the Airy function in this case approaches the limit of the decaying 
segment of complex space, and we deduce from (A 18) that 

Let us now turn to consider P > 0. The situation is somewhat more complicated 
than before, due to the multiplicity of modes. 

In addition to the modes (A 19), there exist additional modes which are unbounded 
as f+ 0. On figure 13, we have shown just a few of these modes, but in fact there seem 
to exist an infinity of modes. These modes do intersect, and at such points either a 
complex-conjugate pair of eigenvalues merge to form two distinct real modes, or 
alternatively two real modes merge to form a complex-conjugate pair; this type of 
behaviour is reminiscent of a number of results seen earlier in this paper. 

Consider the limit now as f + w .  Writing c = (201,)’/~, it appears that 

[ =  [,/f+ ..., 
and so as T?+co, we have 

A w A ,  = r2Ai(-fj2)dfj2, B w B, = Ai’(-;<,)-Ai’(O). (A 23) 
JO 

Equation (A 18) then takes on the simplified form 

3Ai’(0) + (Ai’(0) + Bo)/(A,  +f) = 0. (A 24) 

This system was solved numerically, and it turns out that there is an infinity of roots. 
The first five are 6, w (4.8484, 1.3273), (11.0432, +0.2474), (15.5793,0), (16.1929,0), 
(19.7133,O). All additional roots appear to be real; these observations are entirely 
consistent with our numerical results for (A 18). Asymptotic analysis as l(,1+00 

appears appropriate here; taking this limit leads to 6, w 2{$uz}2/3 as n+w, indicating 
the infinity of modes. 

As f+ 0 + , consider now the behaviour of the additional (unbounded) modes. We 
retain our previous definition of 6, but this time it develops in the following manner: 

( =  [,/f+P’&+.... (A 25) 

We arrive at the following simplified dispersion relationship : 

-5012 

Ai(7)dy = $. 
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The following are the first six roots to this equation: 

t,, x (13.5963, f2.0632), (25.6682, f 1.7741), (35.3296, & 1.6265), 

(46.4542, f 1.5038), (56.3704, k 1.4199), (65.47, f 1.3567). 

Indeed, it would appear that there is an infinite number of these roots, since as 1$1 +a, 
then 

as n + a .  
One further intriguing feature is to be seen in the results shown in figure 13 (a).  This 

concerns the region around f x 4.0163, where the downstream root undergoes an 
important change, with Re(a,) changing sign. At this point, this particular mode 
changes its character, from being a downstream (oscillatory) mode to an upstream 
(oscillatory) mode, with directions referred to the direction of the main body of the 
flow. Indeed, this aspect is directly related to lower-branch (Tollmien-Schlichting) 
waves, which, in this context are non-travelling with respect to the lower (stationary) 
wall, but travelling with respect to the upper (non-stationary) wall. 

We expect a breakdown of the above analysis when f = O(R2l7), in which case a: = 

O( l), and the above analysis is no longer applicable. 

to = -2{;nn)3/2 (A 27) 
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